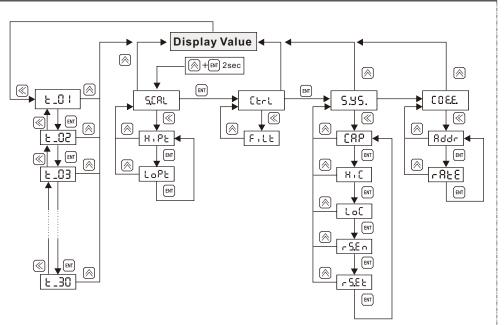


NOTE PROCEDURES OF CALIBRATION FOR THE FIRST INSTALLATION

For installation of EST120, it requests to do the calibration in any two level points for getting a correct measuring result of material level height.


Strongly recommend to record the capacitance value for empty in silo after mounting EST120, and then record and set when the silo is full with materials, so that enable to have a correct result of measurement.

		CO	DE		
A:8	В:ъ	C:C	D: d	E:8	F:۶
G:9	H:8	1: 0	J:J	K:۲	L: L
M: E.	N: o	O:o	P:۶	Q:9	R:r
S:5	T:Ł	U:U	V:U.	W: 3.	X :મ
Y: 9	Z:2				

PROGRAM SETTING FLOW CHART

SETTINGS

Item	Sub- Item	Range	Default	Description
SCAL	X.PE	-1999~9999	100.0	High Point Value (Note1)
	ιορε	-1999~9999	0.0	Low Point Value
ներկ	۶،۱٤	LO,MID,HI	LO	Software filter
535	CRP	0~9999		Current Level
	нιС	0~9999	4000	High Calibration Point
	LoC	0~9999	0.0	Low Calibration Point
	r S.Ein			Refresh temperature calibration (Note2)
	-S.E E			Reset to Factory Default
C O E E.	Rddr	1~255	1	Device Address
	- Զեջ	9.6,19.2,38.4 57.6,115.2	9.6	Communication Rate
ا 0_ ۲		-99.9~999.9	(Note2)	Temp. of 01 th point
5-05		-99.9~999.9		Temp. of 02 th point
31.32 ک		-99.9~999.9		Temp. of 03th point
٤_04		-99.9~999.9		Temp. of 04 th point
٤_0S		-99.9~999.9		Temp. of 05 ^h point
81-26		-99.9~999.9		Temp. of 06 th point
£_07		-99.9~999.9		Temp. of 07 th point
80_ ٤		-99.9~999.9		Temp. of 08 th point
2124		-99.9~999.9		Temp. of 09 th point
٤_10		-99.9~999.9		Temp. of 10 th point
٤_!!		-99.9~999.9		Temp. of 11 th point
5113		-99.9~999.9		Temp. of 12 th point
٤_13		-99.9~999.9		Temp. of 13th point
٤_ ١٩		-99.9~999.9		Temp. of 14 th point
٤_ ۱۶		-99.9~999.9		Temp. of 15 th point
51 ع		-99.9~999.9		Temp. of 16th point
5-17		-99.9~999.9		Temp. of 17 th point
8، ۲۲		-99.9~999.9		Temp. of 18 th point
٤_ ١٩		-99.9~999.9		Temp. of 19 th point
2213		-99.9~999.9		Temp. of 20th point
5151		-99.9~999.9		Temp. of 21 th point
۶-55		-99.9~999.9		Temp. of 22 th point
23-3		-99.9~999.9		Temp. of 23th point
8753		-99.9~999.9		Temp. of 24 th point
25_ع		-99.9~999.9		Temp. of 25 th point
25۔ ۲		-99.9~999.9		Temp. of 26 th point
٤-51		-99.9~999.9		Temp. of 27 th point
28- ع		-99.9~999.9		Temp. of 28 ^h point
25_3		-99.9~999.9		Temp. of 29 th point
1 1				

Note 1: Please refer to calibration process when setting Hi point and Lo point

Note 2: When the display of temperature is abnormal, please refresh the temperature calibration.

BUTTON INSTRUCTION

There are three input button, UP, SHIFT, and ENTER, on control panel. First, select item, and then set the value. Functions of these three buttons are described as below.

At Menu

At Setting

∭Up	Exit	Adding	
SHIFT	Enter	Shift	
ENTER	Shift	Confirm	
ENTER Switching between menu and menu Display Value S.C.RL H.PE LoPE m	en	🔍 / 🕅 : N	12⁄34 ♣ 12⁄34 witch cursor
SHIFT • Enter from main r • Digit shift at settin <u>S.C.RL</u> • Hı-PL • OPL		H.Pt	1234 ■ Blinking 1234 1234 blinking digit blinking
Up Exit from sub-me Progressively inc <u>SCRL</u> H,PE COPE I		enu H.Pt→	123ğ́. €

CALIBRATION WORKING FLOW

Standard Calibration Procedure: 1. Read instruction before calibration 1. Vessel Full: Set and save HIPT 2. Let material level slightly contact sen-sor cable when 2. Vessel Empty: Set and save LOPT calibrating low point During calibration, sensor cable must be inside the vessel Separate HIPT, LOPT as far as possible (Minimum 50%). It would be the best to calibrate from empty to full. ന്ന n fin Example 1 ull Level Display 0 at empty, 100 at full. Calibrate with empty and full vessel 90% Procedure When vessel is empty, key in 0.0 in LOPT. And then press "ENT" to save the value.(Note 1) When vessel is full, key in 100.0 in HIPT. And then press "ENT" to save the value.(Note 1) Example 2 10% When vessel is 10% full, key in 10.0 in LOPT. And then press "ENT" to save the value. Empty When vessel is 90% full, key in 90.0 in HIPT. And then press "ENT" to save the value. Empty Level Note 1: At HIPT and LOPT setting, after press "ENT" button, it will show a switching screen \frown 3 \Leftrightarrow SPUE press "ENT" again to save the value or press "UP" to cancel the setting. Note2: HiC \smallsetminus LoC instructions and the use timing

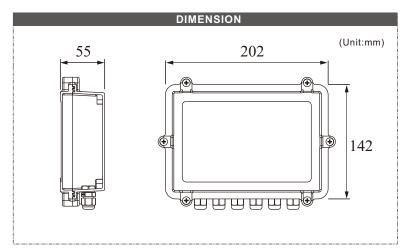
HiC \ LoC Instructions:

When HIPT or LOPT is calibrated, the system automatically writes the current corresponding measurement values (CAP) into HiC or LoC. Example 1: when the lowest point indicates 0% while the corresponding CAP value shows 100pF; the highest point indicates 100% while the corresponding shows 1500pF, when HIPT and LOPT calibration finished, the lowest point measurement value 100pF is written to LoC and the highest point measurement value 1500pF is written to HiC. Example 2: when the lowest point indicates 10% while the corresponding CAP value shows 200pF; the highest point indicates 90% while the corresponding shows 1400pF, when HIPT and LOPT calibration

finished, the system will write the lowest point display value 200pF is written to LoC and the highest point display value 1400pF is written to HiC, When HIPT or LOPT is calibrated, the system will automatically write the corresponding CAP values to HiC and Loc while modifying HiC and LoC will not affect HIPT/LOPT calibration values. For example, after the calibration completion of the example 1, the LoC is modified to 50pF, the corresponding LOPT is still 0%; the HiC is modified to 1600pF and the corresponding HIPT is still 100%

HiC \ LoC use timing:

Timing 1: When the usage environment (test medium, tank structure, probe length, installation position etc.) are the same, The four parameters of HIPT, LOPT, HiC, and LoC can be copied and set to another device sequentially to save calibration steps. Timing 2: The transmitter maintenance or replacement by new circuit board can follow the original parameter settings.


*Because the change of HiC and LoC will affect the original calibration values of HiC and LoC, the measurement results will be changed. If not necessary, please do NOT change the HiC and LoC values Arbitrarily.

MODBUS ADDRESS TABLE

Parameter ADDRESS			TYPE	UNITS	PROPERTY	DESCRIPTION	
Falanielei	HEX	DEC	TTPE	011113	FROFERIN	DESCRIPTION	
PFC_CAP_VALUE	0x1022	4130	FLOAT32	PF	R	Current level value	
PFC_DISPLAY_PERCENTAGE	0x1024	4132	FLOAT32	%	R	Capicitance	
PFC_BOARD_TEMPERATURE	0x1026	4134	FLOAT32	°C	R	Temp. of PCB	
PFC_TEMPERATURE_VALUE-1	0x1028	4136	FLOAT32	°C	R	1st point's temperature	
PFC_TEMPERATURE_VALUE-2	0x102a	4138	FLOAT32	°C	R	2nd point's temperature	
PFC_TEMPERATURE_VALUE-3	0x102c	4140	FLOAT32	°C	R	3rd point's temperature	
PFC_TEMPERATURE_VALUE-4	0x102e	4142	FLOAT32	°C	R	4th point's temperature	
PFC_TEMPERATURE_VALUE-5	0x1030	4144	FLOAT32	°C	R	5th point's temperature	
PFC_TEMPERATURE_VALUE-6	0x1032	4146	FLOAT32	°C	R	6th point's temperature	
PFC_TEMPERATURE_VALUE-7	0x1034	4148	FLOAT32	°C	R	7th point's temperature	
PFC_TEMPERATURE_VALUE-8	0x1036	4150	FLOAT32	°C	R	8th point's temperature	
PFC_TEMPERATURE_VALUE-9	0x1038	4152	FLOAT32	°C	R	9th point's temperature	
PFC_TEMPERATURE_VALUE-10	0x103A	4154	FLOAT32	°C	R	10st point's temperature	
PFC_TEMPERATURE_VALUE-11	0x103C	4156	FLOAT32	°C	R	11st point's temperature	
PFC_TEMPERATURE_VALUE-12	0x103E	4158	FLOAT32	°C	R	12nd point's temperature	
PFC_TEMPERATURE_VALUE-13	0x1040	4160	FLOAT32	°C	R	13rd point's temperature	
PFC_TEMPERATURE_VALUE-14	0x1042	4162	FLOAT32	°C	R	14th point's temperature	
PFC_TEMPERATURE_VALUE-15	0x1044	4164	FLOAT32	°C	R	15th point's temperature	
PFC_TEMPERATURE_VALUE-16	0x1046	4166	FLOAT32	°C	R	16th point's temperature	
PFC_TEMPERATURE_VALUE-17	0x1048	4168	FLOAT32	°C	R	17th point's temperature	
PFC_TEMPERATURE_VALUE-18	0x104A	4170	FLOAT32	°C	R	18th point's temperature	
PFC_TEMPERATURE_VALUE-19	0x104C	4172	FLOAT32	°C	R	19th point's temperature	
PFC_TEMPERATURE_VALUE-20	0x104E	4174	FLOAT32	°C	R	20th point's temperature	
PFC_TEMPERATURE_VALUE-21	0x1050	4176	FLOAT32	°C	R	21th point's temperature	
PFC_TEMPERATURE_VALUE-22	0x1052	4178	FLOAT32	°C	R	22nd point's temperature	
PFC_TEMPERATURE_VALUE-23	0x1054	4180	FLOAT32	°C	R	23rd point's temperature	
PFC_TEMPERATURE_VALUE-24	0x1056	4182	FLOAT32	°C	R	24th point's temperature	
PFC_TEMPERATURE_VALUE-25	0x1058	4184	FLOAT32	°C	R	25th point's temperature	
PFC_TEMPERATURE_VALUE-26	0x105A	4186	FLOAT32	°C	R	26th point's temperature	
PFC_TEMPERATURE_VALUE-27	0x105C	4188	FLOAT32	°C	R	27th point's temperature	
PFC_TEMPERATURE_VALUE-28	0x105E	4190	FLOAT32	°C	R	28th point's temperature	
PFC_TEMPERATURE_VALUE-29	0x1060	4192	FLOAT32	°C	R	29th point's temperature	
PFC_TEMPERATURE_VALUE-30	0x1062	4194	FLOAT32	°C	R	30th point's temperature	
PFC_Hi_Point	0x106D	4205	FLOAT32	%	R/W	Hi_Point	
PFC_Lo_Point	0x106F	4207	FLOAT32	%	R/W	Lo_Point	
PFC_Hi_C	0x1073	4211	FLOAT32	PF	R/W	Hi_C	
PFC_Lo_C	0x1075	4213	FLOAT32	PF	R/W	Lo_C	
PFC_Reset	0x108A	4234	FLOAT32		R/W	(Standard type)Reset	
PFC_Save(Singned)	0x108E	4238	FLOAT32		R/W	(Standard type)Save(Singned)	
PFC_Rescan	0x10A0	4256	NUIT16		R/W	(Explosion-proof type)Rescan	
PFC_Reset	0x10A1	4257	NUIT16		R/W	(Explosion-proof ype)Reset	
PFC Save(Singned)	0x10A4	4260	NUIT16		R/W	(Explosion-proof type)Save(Singr	

Finelink-RS485 collects data from 4 sensors, then transmit to receiver via cable or wireless solution. Each sensor has independent terminal block for wiring to prevent the failure of whole system, easy maintenance. Finelink-RS485 also provides the 24Vdc external power for 4 sensors.

WARNINGS AND CA	AUTIONS
-----------------	---------

1.Intrinsic safe explosion system must request to use explosion proof model together with safety barriers that completed with Ex ia. So that it can be used in hazardous area. 2.Casing material is Aluminum. Installation should make precaution to prevent burn by shock or

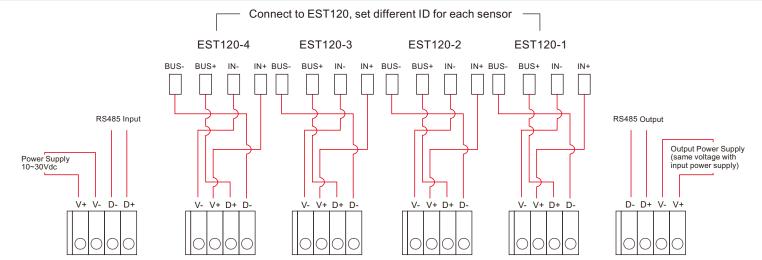
rub. 3.Please make precaution to avoid static and burn caused by non-metal material.

4.EST connect with equipment in non-hazardous area, should follow the user's manual and wire correctly.

5. Shielded cable should be used when connect with external equipment. Shields should be well grounded.

6.Intrinsically safe electric parameter:						
	Terminal code Max. Voltage (Power) input Ui(V)		Max. Current input li(mA)	Max. Power input Pi(mW)	Max. Internal equivalent parameter	
	(Fower)		input ii(iiiA)	input i (invi)	Ci(F)	Li(H)
	IN-,IN+	28	100	700	0	0
	Terminal Code (RS485)	Max. Voltage Ui (V)	Max. Current li (mA)	Max. Power Pi (mW)		nternal parameter
	(10400)	01(1)	11 (111-5)		Ci(µF)	Li(mH)
		8.5	90	192	0	0
	BUS-,BUS+	Max. Voltage Output Uo (V)			Max. External Parameter	
			output to (init)	Output Po (mW)	Co(F)	Lo(mH)
		5.88	19.8	29.11	20	10
Actual temperature resistance refers to the latest catalogue and comply with the explosive proof certificate and standards.						the
7.			components by the		ested to cor	ntact

manufacturer and solve problem together to avoid damage happened ature is as below


· · ·	the relationsp betheen	ampione tomporataro ana prooc	
	Temperature catagories	Ambient temperature	Medium(Process) temperature
	T6 / T80°C	-40°C ≤ Ta ≤ +70°C	-40~80°C
	T5 / T95°C	-40°C ≤ Ta ≤ +80°C	-40~95°C

9. The product installation, use and maintenance shall follow the user's manual and the following standards: IEC 60079-14 Explosive atmospheres - Part 14: Electrical installations design, selection and

IEC 60079-17 Explosive atmospheres - Part 17: Electrical installations inspection and maintenance

IEC 60079-19 Explosive atmospheres - Part 19: Equipment repair, overhaul and reclamation. IEC 60079-25 Explosive atmospheres - Part 25: Intrinsically safe systems.

WIRING DIAGRAM

INSTALLATION

With thread connection, please drill a 1-1/4"PF thread, and then tighten the device firmly.

CAUTION

- (1) The sensor cable or stem should be in parallel with wall of vessel or silo. Because Of accumulation of material on the cable would degrade accuracy, please don't let
- cable or stem be too close to the wall. (2) After installation, firm the thread and flange, And check if enclosure and vessel/silo are well grounded. If it's not, sensor might not work functionally.
- (3) When operating with big vessel/silo and material is grainy or powder type, the Terminal of cable should be anchored at bottom of vessel. Meanwhile, use isolator to
- mount the cable (4) Make sure the cover and cable is tightly closed to avoid any moist from outside.
- Otherwise, the level measurement will not be accurate.
- (5) EST120 measures both level and temperature of material. Sensor can be mounted Directly on the top of the silo by thread connection.
- (6) To avoid the cable damage, please fix the cable to the bottom of tank. The tensile force does not exceed 30 kgf.
- (7) Using FineLink RS485 to avoid malfunction of whole system that is caused by single sensor.
- (8) We suggest to use Category 5 cable (CAT5E) or Category 6 cable CAT6 UTP to ensure quality of signal transmission. Insulated ICD connector is recommended for wiring.
- (9) The total length of sensor cable and wiring cable is not longer than 100 meters. (10) For the best and stable performance on signal connection, strongly recommend
- EST Temperature cable "must" be equipped with IPC (Industrial computer) which has MMS software installed already. It will generate cost and charge to the customers who WITHOUT FineTek's IPC, but requesting after service for commissioning and troubleshooting for signal connection.

(11) For each time the power turned off, it will take 15 seconds to warm up to facilitate the device to rescan and save the data.

SPECIFICATIONS-FINELINK RS-485

Power input	10~30Vdc		
Current input	2A		
Power output	10~30Vdc		
Current output	400 mA / CH (Under power input and current of 2A)		
Output	RS-485		
Input	Four sets of RS-485 (Each set is independent and isolated)		
Baud rate	1200~57600		
Working temp	-40~80°C		
Electrostatic protection	IEC61000-4-2 ESD 8kV Air, 4kV contact		
IP rating	IP67		
Power consumption	200mA at 24VDC		

FineTek Co.,Ltd.

No.16, Tzuchiang St., Tucheng Industrial Park, New Taipei City 23678, Taiwar Tel: 886-2-22696789 Fax: 886-2-22686682 Email: info@fine-tek.com http://www.fine-tek.com

-1 1/4" PF